辽宁省高庆硫酸盐有限公司
联系我们
电话: 0418-617427
邮件: bbzmfjqacz@disrec-inc.com

嵩山重工讲解石粉岩性对混凝土抗硫酸盐性能的影响

细碎机混凝土的冻害是由于其毛细孔中的水分受到冻结,伴随着这种相变,产生膨胀压力:剩余的水分流到附近的孔隙和毛细管中,在水运动的过程巾,产生膨胀压力及液体压力,使混凝士破坏。冻害的结果除了混凝土的组织膨胀劣化之外,表面层剥落与开裂等现象均会发生。

关于混凝土抗冻机理假说可以归结为两类:一类是较早期的结冰膨胀引起破坏应力的假说,即静水压假说和渗透压假说:另一类是20世纪90年代提出的温度应力疲劳破坏假说,这一假说主要是针对高强或高牲能混凝土冻融破坏现象提出的。

为了研究石粉岩性对混凝土抗冻性能的影响,对比试验采用配合比见表,混凝土试验龄期为28d。

从表3-16可以看出,当不同岩性石粉与活性矿物掺和料以15%取代水泥时,经过冻融循环试验后,混凝土的相对动弹模量差距一般小于2%。即可以认为石粉岩性的变化对混凝十抗冻性能没有影响。

混凝土的硫酸盐侵蚀破坏被认为是引起混凝土材料失效破坏的四大主要因素之一。如果硫酸盐浓度超过1500mg/L,硫酸盐侵蚀的可能性就很大。在我国,一些铁路、公路、矿山的水电工程中都发现了地下水对混凝土构筑物的硫酸盐侵蚀破坏问题,有的已严重危及了工程的安全运行。水泥基材料硫酸盐侵蚀破坏的实质是由环境水中的硫酸盐离子进入水泥石内部与一些固相组分发生化学反应,牛成一些难溶的盐类矿物而引起。这些难溶的盐类矿物一方面可使硬化水泥石中CH和CSH等组分溶出或分解,导致水泥基材料强度和粘结性能损失。

其中碳硫硅钙石(Thaumasite)作为一种矿物早在20世纪60年代就被发现存在于受硫酸盐和碳酸盐共同侵蚀的水泥基材料中,但长期以来并没有引起人们应有的重视。1999年1月,英国伯明翰大学lcc Clarke教授等在一份报告中将此类破坏定义为一种特殊形式的硫酸盐侵蚀,即TSA型。一般认为碳硫硅钙石有两种生成途径:一种认为其是由于水泥石中水化产物CSH凝胶与硫酸盐和碳酸盐在适当条件下直接反应生成,此反应的过程非常缓慢,但它能直接将水泥石中的CSH凝胶转变为无任何胶结性能的碳硫硅钙石晶体,使水泥基材料溶蚀解体;另一种认为其是由硅钙矾石过渡相逐渐转化而成,此反应过程也非常缓慢,但是-旦碳硫硅钙石晶体开始形成,反应速度会明显加快。同时,大量研究还表明,遭受硫酸盐侵蚀的掺石灰石粉水泥基材料在温度低于10℃的条件下可产生碳硫硅钙石型破坏。

BACK